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SuiteSparseQR is a sparse QR factorization package based on the multifrontal method. Within
each frontal matrix, LAPACK and the multithreaded BLAS enable the method to obtain high
performance on multicore architectures. Parallelism across different frontal matrices is handled
with Intel’s Threading Building Blocks library. The symbolic analysis and ordering phase pre-
eliminates singletons by permuting the input matrix into the form [R11 R12 ; 0 A22] where R11 is
upper triangular with diagonal entries above a given tolerance. Next, the fill-reducing ordering,
column elimination tree, and frontal matrix structures are found without requiring the formation
of the pattern of AT A. Rank-detection is performed within each frontal matrix using Heath’s
method, which does not require column pivoting. The resulting sparse QR factorization obtains
a substantial fraction of the theoretical peak performance of a multicore computer.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra—
linear systems (direct methods), sparse and very large systems; G.4 [Mathematics of Comput-

ing]: Mathematical Software—algorithm analysis, efficiency

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: QR factorization, least-square problems, sparse matrices

1. INTRODUCTION

Sparse QR factorization is one of the key direct methods for solving large sparse
linear systems and least-squares problems. Typically, orthogonal transformations
such as Givens rotations [Givens 1958] or Householder reflections [Householder 1958]
are applied to A (or a permuted matrix AP ), resulting in the factorization A = QR
or AP = QR. The resulting factors can be used to solve a least-squares problem, to
find the basic solution of an under-determined system Ax = b, or to find a minimum
2-norm solution of an under-determined system AT x = b.

The earliest sparse direct methods operated on A one row or column at a time
([Björck 1996; George et al. 1988; George and Heath 1980; Heath 1982; Heath
and Sorensen 1986]; see also [Davis 2006]). These methods are unable to reach
a substantial fraction of the theoretical peak performance of modern computers
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because of their irregular access of memory, although they are very competitive
when R remains very sparse. The row-merging method [Liu 1986] introduced the
idea that groups of rows could be handled all at once. This idea was fully realized
in the sparse multifrontal QR factorization method. In the multifrontal method,
the factorization of a large sparse matrix is performed in a sequence of small dense
frontal matrices; the idea was first used for symmetric indefinite matrices [Duff
and Reid 1983] and later extended to sparse LU [Duff and Reid 1984; Davis and
Duff 1997; Davis 2004] and sparse Cholesky factorization [Liu 1989]. [Puglisi 1993]
first extended the multifrontal approach to sparse QR factorization; other prior
implementations of multifrontal sparse QR factorization include [Matstoms 1994;
1995; Amestoy et al. 1996; Lu and Barlow 1996; Sun 1996; Pierce and Lewis 1997;
Edlund 2002].

SuiteSparseQR is a multithreaded multifrontal sparse QR factorization method
that is an extension of these prior methods, and its unique features are discussed
here. Additional background, definitions, and examples are given to make this dis-
cussion self-contained. Sections 2 and 3 present the symbolic analysis and numeric
factorization methods used in SuiteSparseQR. Its two techniques for exploiting mul-
ticore architectures are discussed in Section 4. Comparisons with existing sparse
QR factorization methods are given in Section 5. Throughout the paper, fixed
width font (x=A\b, for example) denotes MATLAB notation, except in the figures.

2. ORDERING AND SYMBOLIC ANALYSIS

Direct methods for sparse linear systems typically split into three distinct phases:
(1) ordering and symbolic analysis, typically based solely on the nonzero pattern of
A, (2) numeric factorization, and (3) a solve phase, which uses the factorization to
solve a linear system or least-squares problem. This framework allows phase (1) to
be performed once and reused multiple times when dealing with multiple matrices
A with different numerical values but identical nonzero pattern. The sparse QR
factorization is no exception to this rule, although one of the features for reducing
work and fill-in presented here (exploiting singletons) can only be done when the
symbolic phase has access to the numerical values of A.

2.1 Exploiting Singletons

The structural rank of A is based solely on its nonzero pattern, and is given by
sprank(A) in MATLAB [Davis 2006]. It is the largest numeric rank of A that can
be obtained via any selection of numerical values for these entries. If sprank(A) is
less than min(m, n), then A is structurally rank-deficient.

A column singleton is a column j of the matrix A with a single nonzero entry
aij whose magnitude is larger than a given threshold τ ; the corresponding row i
is called a row singleton. If the matrix A has a completely zero column then that
column is still a “singleton,” but it has no corresponding row singleton. The column
singleton is permuted to the top left corner and removed from A. This is repeated
until no more singletons exist, giving the block matrix

[

R11 R12

0 A22

]

.

If A has full structural rank, R11 will be square and upper triangular and all its
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diagonal entries will larger in magnitude than τ . If the matrix is structurally rank-
deficient then there may be column singletons with no corresponding row singletons.
These can be permuted to the end of R11, so that R11 is a rectangular and upper
trapezoidal. For example, suppose A has four column singletons, but the third one
has no corresponding row singleton:

A =













r11 x x x x x
r22 x x x x

r34 x x
x x
x x













.

The matrix R11 can be permuted into the upper trapezoidal form

R11 =





r11 x x x
r22 x x

r34



 .

The sparse QR factorization for the singleton rows and columns of A requires no
numerical work at all, and no fill-in is incurred in R11 or R12. Once singletons
are removed, the remaining matrix A22 is ordered, analyzed, and factorized by the
multifrontal sparse QR algorithm discussed below.

Singletons frequently arise in real applications. University of Florida Sparse
Matrix Collection [Davis 2008b] contains 353 linear programming problems (with
m < n). For 215 of them, every column in the matrix is a column singleton, A22 is
empty, and the QR factorization for a basic solution takes no floating-point work.
For many of the rest (53 problems), A22 has less than half the columns of A. Only
29 have no column singletons. A minimum 2-norm solution of an under-determined
system requires the factorization of AT ; in this case, 169 of them have at least one
column singleton. The corresponding rows for these column singletons can be very
dense, so that removing them from A prior to the QR factorization of A22 can
greatly reduce work and fill-in (a single dense row of A causes AT A and R to
become completely nonzero). Of the 30 least-squares problems in the collection, 15
have at least one column singleton.

The algorithm is much like a breadth-first search of the graph of A, except that
it can stop early when no more candidate singletons exist. It requires access to
the rows of A, and thus a transpose of A is required since SuiteSparseQR takes
as input the matrix A in compressed column form. However, the transpose of A
is needed later to find the fill-reducing ordering, so this work is not wasted. Once
the singletons are removed, their rows and columns are pruned (in-place) from the
row-form copy of A, and the resulting matrix is then passed to the fill-reducing
ordering. Thus, excluding the transpose (which must be done anyway), the time
taken for finding singletons is linear in the number of nonzeros in R11 and R12, plus
O(n) time for the initial scan. Only if singletons exist is the matrix pruned, taking
O(|A|) time, where |A| denotes the number of nonzeros in the matrix A. If the
symbolic analysis is to be reused by subsequent matrices with different numerical
values, singletons are not exploited because they conflict with how rank-deficient
matrices are handled.

No prior multifrontal sparse QR method exploits singletons, although MA49
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[Amestoy et al. 1996; Puglisi 1993] and Edlund’s method [Edlund 2002] both have an
option for using a permutation to block triangular form (BTF). Finding singletons
in A is much faster than a Dulmage-Mendelsohn decomposition such as dmperm

in MATLAB [Davis 2006] or a permutation to block triangular form (BTF) [Duff
1977; 1981; Pothen and Fan 1990]. Finding singletons or the BTF takes far less
time than the numerical factorization itself, however. Each singleton is a 1-by-1
block in BTF of A, if A is not rank-deficient. MA49 uses the BTF of [Pothen
and Fan 1990], which also splits the under- and overdetermined blocks into the
connected components of its bipartite graph, giving a block diagonal form for these
two submatrices with rectangular diagonal blocks.

Using a BTF ordering is suitable only for full-rank matrices. For rank-deficient
matrices where rank(A) < sprank(A), the BTF ordering may be numerically un-
suitable. SuiteSparseQR avoids this problem by only allowing singletons whose
magnitude exceeds τ . If numerical rank deficiency were not considered, singletons
could be exploited in a purely symbolic analysis phase, but SuiteSparseQR does
not provide this option.

2.2 Fill-reducing ordering

After singletons are found (if any), the remainder of the ordering and symbolic
analysis phase depends solely on the nonzero pattern of A (or A22, more precisely).

If the matrix A is strong Hall, the nonzero pattern of the factor R is identical to
the Cholesky factorization of AT A [Coleman et al. 1986; George and Heath 1980]. A
strong-Hall matrix is a matrix that cannot be permuted into block upper triangular
form. Structurally rank-deficient matrices are never strong-Hall, but non-strong-
Hall matrices can have full structural and numeric rank (consider an n-by-n diagonal
matrix, for example, which has n diagonal blocks in its block triangular form).

The symbolic analysis is thus modelled after the Cholesky factorization of AT A.
However, SuiteSparseQR never forms AT A unless a particular ordering method
requires it. It can order the matrix A (or the pruned matrix after removing single-
tons) with COLAMD [Davis et al. 2004a; 2004b]. COLAMD finds a fill-reducing
ordering P that attempts to reduce the number of nonzeros in the QR factorization
of AP or the Cholesky factorization of (AP )T (AP ). It does not form AT A to per-
form this ordering, but uses the graph of A itself; each row of A forms a clique (or
hyperedge, equivalently) in the graph of AT A. As the elimination proceeds, new
cliques are formed, and these are also held as a list of the nodes in the cliques, just
as each row of A represents a clique in the graph.

SuiteSparseQR uses CHOLMOD [Chen et al. 2009; Davis and Hager 2009] for
its ordering and analysis phase, and thus can use any ordering method available
to CHOLMOD: COLAMD on A, AMD1 on the explicit pattern of AT A [Amestoy
et al. 1996; 2004], METIS [Karypis and Kumar 1998] applied to AT A, CHOLMOD’s
nested dissection ordering based on METIS, or any combination of the above, where
multiple methods can be tried and the ordering with the least fill in the Cholesky
factorization of AT A used. The asymptotic run times of these ordering methods do
not have tight bounds. However, experimental results have shown that COLAMD
and AMD, with occasional exceptions, take time roughly proportional to the num-

1AMD: an acronym for Approximate Minimum Degree, not to be confused with AMD, Inc.
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ber of nonzeros in A and AT A, respectively [Davis 2008b]. This is not an upper
bound, but an average based on experiments with nearly 2000 matrices in the UF
Sparse Matrix Collection, nearly all of which come from real applications.

It is normally very straightforward for any multifrontal sparse QR to adapt to
any fill-reducing ordering. MA49 uses AMD on the explicit matrix AT A. [Lu and
Barlow 1996] use nested dissection [George 1973; Lipton et al. 1979], which also
requires AT A. [Pierce and Lewis 1997] and [Matstoms 1994] do not discuss the
fill-reducing ordering, but their methods were developed before AT A-free methods
such as COLAMD and the column-count algorithm of [Gilbert et al. 2001] were
developed. Edlund uses optionally uses COLAMD [Edlund 2002], but does not use
the column-count method in [Gilbert et al. 2001].

2.3 Symbolic factorization

CHOLMOD then performs the symbolic supernodal Cholesky factorization of AT A
(or AT

22A22 if singletons have been removed). Each supernode in the Cholesky
factor L represents a group of adjacent columns with identical or nearly identical
nonzero pattern, which is the same as a set of rows of the R factor for a QR
factorization. Each supernode from CHOLMOD becomes a single frontal matrix
for the multifrontal QR factorization.

The supernodal Cholesky analysis starts by computing the elimination tree of
AT A (also called the column elimination tree of A) and the column counts for the
Cholesky factorization of AT A, without forming AT A itself [Gilbert et al. 2001].
The column counts are the number of nonzeros |L∗j | in each column of L. The
time taken by this step is almost O(|A|), where “almost” is theoretically at worst
O(|A| log n). If CHOLMOD were to use a theoretically optimal implementation of
the disjoint set-union-find [Tarjan 1975], this time would be O(|A|α(|A|, n)) where
α is the inverse Ackermann function, a very slowly growing function. CHOLMOD
uses a method that is faster in practice but theoretically bounded by O(|A| log n).
In practice, this step takes essentially O(|A|) time; the super-linear growth is not
observed.

The column counts and column elimination tree then determine the supernodes.
Two columns j and j + 1 are in the same supernode if parent(j) = j + 1 and
|L∗j | = |L∗,j+1| + 1, which implies that the two columns have the same nonzero
pattern (except for j itself, which appears as a row index only in L∗j). Note that
this test does not require the nonzero pattern of L itself, which takes time O(|L|) to
find. For these two columns to reside in the same fundamental supernode, j must
also be the only child of j + 1; SuiteSparseQR does not use this restriction.

Time and memory usage can be decreased by exploiting relaxed supernodes,
where two adjacent columns may be combined into a supernode where the nonzero
patterns of L∗j \ {j} and L∗,j+1 are similar but not identical. CHOLMOD does
this relaxed amalgamation based solely on the nonzero counts of L. Once the
relaxed supernodes are found, the nonzero pattern of each supernode is computed,
taking time proportional to the number of nonzeros in the leftmost columns of each
supernode. This is also the amount of integer memory space required to represent
the supernodal nonzero pattern of L. A dense matrix consists of a single supernode,
so this step takes as little as Ω(n) time. In any case, O(|L|) is a loose upper bound
on the time; it is typically much less than this because of relaxed amalgamation.
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Fig. 1. A sparse matrix A, its factor R, and its column elimination tree

The result of this step is the supernodal elimination tree and the supernodal
representation of L for the Cholesky factorization of AT A, but recall that singletons
are typically removed from A prior to this analysis. If A is strong Hall, then it will
have no singletons at all, and also this analysis will be exact. Otherwise, it is
possible that the analysis gives an upper bound on the nonzero pattern of R.

A more concise description of the pattern of R for the non-strong-Hall case could
be obtained from the row-merge tree [Oliveira 2001]. However, SuiteSparseQR
handles rank deficient matrices using the method of [Heath 1982]. For a multifrontal
sparse QR factorization, Heath’s method requires R to accommodate any nonzero
entry in the Cholesky factorization of AT A. SuiteSparseQR thus does not use the
row-merge tree.

Figure 1 gives an example of the multifrontal sparse QR factorization of a small
sparse matrix A. The rows of A have been sorted according to the column index
of their leftmost nonzero entry. The factor R is shown to the right, with each
supernode of R consisting of an adjacent set of rows with identical nonzero pattern.
The horizontal lines in A subdivide the rows according to the frontal matrix of R
into which they are first assembled. A dot (.) is shown in A for an entry that
becomes structurally nonzero in the corresponding frontal matrix. The column
elimination tree is shown in the bottom right of the figure. The parent of i is given
by the smallest j > i for which rij 6= 0. The supernodes are shown in the column
elimination tree as rounded boxes. This example is continued in Section 3, which
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shows the assembly and numeric factorization of two of the five frontal matrices.
After CHOLMOD’s supernodal analysis, SuiteSparseQR continues its analysis

by sorting the rows of AP according to the column index of the leftmost nonzero
in each row of AP . This results in the permuted matrix P2AP . A row i of P2AP is
assembled in the frontal matrix whose pivotal columns contain the leftmost column
index j of row i. The time taken by this step is O(|A|).

Finally, SuiteSparseQR simulates the sparse multifrontal QR factorization by
counting how many rows may appear in each frontal matrix, and determining the
amount work required to perform the Householder QR factorization of each frontal
matrix. It also finds the staircase for each frontal matrix, which is the row index of
where the zero entries start in each column. This analysis provides an upper bound
in case A is rank-deficient, and is exact if rank-detection is disabled. The time
taken by this step is proportional to the number of integers required to represent
the supernodal pattern of L.

The total time and memory usage for the analysis is thus roughly O(|A| + |R|),
excluding the ordering time (which is quite often O(|A|) in practice), and where
|R| is the number of integers required to represent the multifrontal structure of
the matrix R. This can be much less than the time and memory required to form
AT A, particularly when m << n. In practice, this time is so low that the total
QR factorization time of a dense matrix stored in sparse format, including the
ordering, analysis, and numeric factorization, is not much higher, and sometimes
even lower, than the time taken by LAPACK [Anderson et al. 1999] to factorize the
same matrix in a dense storage format.

None of the six prior multifrontal sparse QR methods use the results of [Gilbert
et al. 2001]. Five of them use the elimination tree of AT A and must form the
nonzero pattern of AT A explicitly. [Edlund 2002] does not form AT A, but finds a
tree from the pattern of R itself during an ordering method much like COLAMD;
the resulting tree and pattern of R would not be able to accommodate subsequent
rank-detection, since it is not identical to the column elimination tree of A.

To illustrate the difference between the row-merge tree and the column elimina-
tion tree, consider the following matrix,

A =





a11 a13 a13

0 a22 0
0 0 a33



 .

The row-merge tree is a forest of three nodes and no edges, and r23 is structurally
zero. The column elimination tree is a chain, 1 → 2 → 3, AT A is all nonzero,
and r23 is structurally nonzero. If |a11| < τ it is treated as zero, and in Heath’s
method row 1 must be completely zeroed via Givens rotations. Row 2 fills in from
row 1, because column 2 is the parent of column 1 in the column elimination tree,
and r23 becomes nonzero. If all the diagonal entries of A for this particular matrix
are larger than τ , the row-merge tree is sufficient. The matrix A would also be
permuted into R via the singleton preordering described in Section 2.1.

3. NUMERIC FACTORIZATION

For its numerical factorization, SuiteSparseQR uses much of the theory and al-
gorithms from the prior implementations of multifrontal sparse QR factorization
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Fig. 2. Assembly and factorization of a leaf frontal matrix

[Puglisi 1993; Matstoms 1994; Amestoy et al. 1996; Lu and Barlow 1996; Pierce
and Lewis 1997; Edlund 2002]. Described here are the key features that differ in
SuiteSparseQR, plus enough background to make this discussion self-contained.

3.1 Frontal matrix assembly

For the assembly and factorization of its frontal matrices, SuiteSparseQR uses a
modified version of Strategy 3 from MA49 [Amestoy et al. 1996] (refer to Figure 7 on
page 284 of their article). MA49 does not have the option of discarding the House-
holder vectors except when solving problems via the seminormal equations (which
do not require Q, but which can be less accurate). In contrast, SuiteSparseQR can
be given the right-hand-side b of a least-squares problem in which case it factor-
izes the concatenated matrix [Ab] and can discard the Householder vectors once
each frontal matrix is factorized. SuiteSparseQR’s numerical factorization handles
rank-deficient frontal matrices; MA49 does not.

This method is illustrated in Figures 2 and 3. Figure 2 shows the assembly of a
leaf node in the frontal matrix tree corresponding to nodes 1 and 2 of the column
elimination tree. In this example, rows 1, 2, and 3 of A have a leftmost nonzero
in column 1, and rows 4, 5, and 6 have a leftmost nonzero in column 2. The first
two rows of R have identical nonzero pattern and thus can be handled in a single
frontal matrix. The corresponding columns, 1 and 2, are referred to as the pivotal

columns for this front (Amestoy, Duff, and Puglisi refer to them as fully-summed

variables; Pierce and Lewis call them internal columns). The other columns (6, 8,
and 11) are exterior or non-pivotal.

Entries in A are shown as an x; zeros to the right of the leftmost nonzero are
shown as a dot (.). Assuming columns 1 and 2 are linearly independent, the
QR factorization of this frontal matrix gives the result shown in the right half of
Figure 2, with two rows of R (the entries marked r), a 3-by-3 upper triangular
contribution block (the entries marked c) that must be assembled into the parent,
and 5 Householder vectors (the entries marked h). In general, the contribution
block C can be upper trapezoidal.

Consider the parent of this front. The parent (front 4) is the front which contains
the first non-pivotal column (in this case, column 6) as one of its pivotal columns.
In Figure 3, the parent has three children, one of which is front 1 given in Figure 2.
Just the C blocks of these three children are shown in Figure 3; note that one
of them is upper trapezoidal. The entries in the C blocks are given subscripts
according to the block in which they reside. The pivotal columns of the parent,
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factorized front 4, factorized front 4,

Fig. 3. Assembly and factorization of a frontal matrix with three children

front 4, are columns 5, 6, and 7. Rows 16 through 22 of A have a leftmost nonzero
entry in the pivotal columns of front 4. The staircase of the assembled front 4 is
(4, 8, 12, 14, 15, 16, 17), which gives the (0-based) row index of where the structural
zeros start in each column of the frontal matrix.

The contribution blocks of the three children and rows 16 through 22 of A are
assembled into the front; this is shown in the bottom left of Figure 3. The House-
holder QR factorization is shown to its right. A 4-by-4 upper triangular contribution
block remains to be assembled by the parent of front 4. The rank-deficient case is
discussed in the next section.

[Amestoy et al. 1996] point out that the exact amount of memory needed to
hold the Householder vectors is difficult to predict with this strategy. However, the
symbolic analysis phase of SuiteSparseQR precisely simulates the assembly of each
frontal matrix, in O(|A|+ |R|) time, to find this exact amount if the rank-detecting
threshold is disabled (τ < 0). This corresponds to the case for MA49. When τ ≥ 0,
SuiteSparseQR’s symbolic analysis finds an upper bound instead, which is the best
that can be done since rank-detection cannot be done during symbolic analysis.
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3.2 Frontal matrix factorization

Once the frontal matrix is assembled, the dense Householder QR factorization of
the frontal matrix is found. If the pivotal columns of the frontal matrix are all
linearly independent, this factorization is nearly the same as DGEQRF in LAPACK
[Anderson et al. 1999]. SuiteSparseQR does not call DGEQRF; instead, it calls the
functions that DGEQRF relies upon, namely:

(1) DLARFG, which constructs a single Householder vector,

(2) DLARF, which applies a single Householder vector,

(3) DLARFT, which constructs the T matrix for a block of Householder vectors
[Bischof and Van Loan 1987; Schreiber and Van Loan 1989], and

(4) DLARFB, which applies a block of Householder vectors.

DGEQRF uses a workspace of size n-by-b where typically b = 32. It then splits
this into two arrays, T of size b-by-b, and another array of size (n− b)-by-b, for the
compact WY update of DLARFT and DLARFB. However, both arrays are given
a leading dimension of n. When m << n, the small T array is spread over a vast
region of memory, with a detrimental impact on performance. The dense frontal
factorization algorithm in SuiteSparseQR gives T a leading dimension of b, instead.
As a result, its dense QR factorization is faster than DGEQRF when m << n, and
achieves the same performance as DGEQRF otherwise.

In contrast to DGEQRF, the dense frontal matrix factorization exploits the zero
entries in the lower left corner of the frontal matrix. As an example, consider
the frontal matrix in Figure 3. The blocksize parameter b (default 32) defines the
number of columns in each panel of the frontal matrix. For this small example,
suppose the panel size is two instead. The first Householder vector is computed
with DLARFG and applied to the current panel (the first two columns of the
frontal matrix). Only the first four rows are operated on. Next, the Householder
reflection that zeros out the entries marked h in column 6 is found. Since the panel
is now complete, it is applied in its entirety to the rest of the frontal matrix, using
DLARFT and DLARFB. This block of Householder updates is applied only to the
first 8 rows of the frontal matrix, thus exploiting most of the zeros in the lower left
corner. In contrast, DGEQRF would operate on all 17 rows with each panel.

SuiteSparseQR also handles rank deficient matrices, in contrast to all but one
prior sparse multifrontal QR factorization method ([Pierce and Lewis 1997]). Their
method uses a sparse incremental condition estimator [Bischof et al. 1990], and
restricted column pivoting. The method is very accurate, but it requires a dynamic
updating/downdating of the factor R computed so far, if a column is found to be
linearly dependent. The structure of the update/downdate is identical to a sparse
update/downdate of the Cholesky factorization of AT A [Davis and Hager 1999;
2001; 2009; Chen et al. 2009]. The column that needs to be removed may not be
the current column being eliminated; thus the need for a dynamic restructuring of
the existing R. The nonzero pattern of the resulting matrix can arbitrarily differ
from the Cholesky factorization of (AP )T AP with the original fill-reducing ordering
P . Since it requires a mixture of Householder reflections and Givens rotations,
their method is not well-suited to preserving the factor Q, in either matrix or
Householder-vector form; they do not provide the option of keeping Q.
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SuiteSparseQR, in contrast, uses a simpler method by [Heath 1982] for handling
rank-deficiency, extended in the present work to the sparse multifrontal QR and
allowing Q to be kept as a set of Householder vectors. In Heath’s method, if
the diagonal of R drops below a given threshold, the entire row is zeroed out via
Givens rotations, and the row is deleted from R. The result is a “squeezed” factor
R that is no longer upper triangular. The MATLAB sparse qr also uses Heath’s
strategy for rank-deficient matrices, but (in MATLAB version R2008b) does not use
a multifrontal method. Instead, the MATLAB sparse qr in R2008b and earlier uses
Gilbert’s implementation of [George and Heath 1980] based on Givens rotations.

As an example of how rank-deficient matrices are handled in SuiteSparseQR,
consider Figure 3. After the Householder reflection of column 5 is applied to column
6, suppose the 2-norm of column 6 drops below the threshold τ . The result is shown
in the bottom right of Figure 3. The Householder reflection for column 6 is skipped,
and this front holds one less row of R than expected. This gives Heath’s “squeezed”
R. The contribution block is still 4-by-4 in this case, but in general its size can
increase. The number of columns in C remains the same, namely, the number of
non-pivotal columns in the front. If C would have started out as upper trapezoidal
(as in the case for the third front), the loss of one column would cause C to grow
in size by one row. These observations lead to the following theorem.

Theorem 1 Heath’s method of handling rank-deficient matrices in a sparse QR

factorization requires the use of the column elimination tree, and causes no fill-in

in R if the nonzero pattern of R is taken as the Cholesky factor of AT A.

Proof: The proof is by induction on the path from node i to the root, where
|rii| < τ for the given threshold τ . This entry is treated as numerically zero, and all
of row i must be zeroed out in the factor R. Let j be the column index of the next
nonzero entry in row i, to the right of column i. To zero this entry, Heath’s method
performs a Givens rotation between row i and row j of R. Node j is the parent of
i in the column elimination tree, and prior to the rotation, the nonzero pattern of
Ri∗ is a subset of Rj∗ (excluding i itself), assuming R has the same pattern as the
Cholesky factorization of AT A [George and Liu 1981]. Thus, this rotation causes
no fill-in in Rj∗, and causes the updated row i to take on the same nonzero pattern
of Rj∗ (excluding the entries rii and rij , which have been set to zero). Let k be the
column index of the next nonzero entry; k is the parent of j.

If the updated row i has been zeroed out from columns i to k − 1, it must take
part in a Givens rotation with row k, taking on the same nonzero pattern as row
k (except for rik, which is set to zero) and causing no fill-in in Rk∗ because the
pattern of row i is a subset of the pattern of row k. If p is the least column index of
the nonzero entries in the updated row i, node p is the parent of k and the pattern
of row i is a subset of row p. The process stops at the root of the tree, at which
point row i is completely zero. 2

SuiteSparseQR uses Householder reflections applied to frontal matrices instead
of Givens rotations applied to rows, but structurally the effect on R is identical.

The frontal matrices are factorized in post-ordered fashion, so that the contri-
bution blocks can be easily placed on a stack. To assemble and factorize a front,
space for a rectangular frontal matrix is first allocated at the top of a workspace
that will hold R and the Householder vectors H (assuming the latter is not dis-
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carded). Next, the children are popped from the stack (held at the bottom of this
same block of memory) and assembled into the front. The frontal is factorized, and
then its contribution block C is copied out of the frontal matrix and pushed on the
stack. Finally, the R and H components are compressed, in place, to hold just the
entries r and h entries shown in Figure 3 (reclaiming the space used by C block and
the explicit zeros in the bottom left corner of the frontal matrix). The components
of the Householder vectors H need not be preserved if the matrix Q is not needed.

3.3 Using the QR factorization

If P is the fill-reducing column permutation, then the QR factorization is AP = QR.
The solution to a least-squares problem (minx ||b − Ax||2) is given by solving
[

R
0

]

PT x = QT b, or x=P*(R\(Q’*b)) in MATLAB notation [Golub 1965]. If

given the right-hand-side b when A is factorized, SuiteSparseQR applies the House-
holder reflections to b while factorizing A, giving c = QT b when the frontal matrix
factorization is complete. Thus, the Householder reflections can be discarded after
each frontal matrix is factorized.

Computing the minimum 2-norm solution to an underdetermined system Ax = b
can be done with the factorization of AT (namely, AT P = QR). The solution is
found by solving

[

RT 0
]

QT x = PT b, or x=Q*(R’\(P’*b)) in MATLAB notation.
The Householder reflections cannot be applied and discarded during factorization.
SuiteSparseQR does not form Q explicitly, but instead saves the set of Householder
vectors. After the forward solve (c=R’\(P’*b)), a separate SuiteSparseQR function
then applies Q to c, giving x=Q*c.

Although it is not required to solve a least-squares problem or a linear system,
if needed SuiteSparseQR can construct the matrix form of Q in two different ways.
It can keep the Householder reflections and then apply them when done to a sparse
identity matrix I. Alternatively, it can apply them to b = I during factorization and
discard them, resulting in the matrix C = QT which can then be simply transposed
to obtain Q. In practice, the latter method is always faster.

4. PARALLELISM

At least two opportunities for parallelism exist within a multifrontal sparse QR
factorization. The first opportunity arises in the column elimination tree. In the
example given in Figure 1, the first three frontal matrices can be factorized in
parallel (one front for computing the first two rows of R, and the next two which
are used to compute rows 3 and 4 of R). Using this level of parallelism requires
explicit thread-based software in SuiteSparseQR.

The second opportunity arises within each frontal matrix. The factorization of a
frontal matrix relies on LAPACK, which in turn uses the Level-3 BLAS [Dongarra
et al. 1990]. Most of the vendor-supplied BLAS, such as the Intel Math Kernel Li-
brary (MKL) BLAS, the AMD ACML BLAS, the Sun Performance Library BLAS,
as well as the Goto BLAS [Goto and van de Geijn 2008] can exploit a shared-
memory multicore architecture with no additional programming effort on the part
of developers of packages that use the BLAS.

SuiteSparseQR exploits tree-based parallelism by using Intel’s new Threading
Building Blocks (TBB) software for writing parallel applications in C++ on shared-
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memory multicore architectures [Reinders 2007]. Often, a TBB-based application
need only determine the tasks; TBB itself takes care of the task scheduling and
synchronization. This is the case for SuiteSparseQR. Although TBB does provide
application interfaces for mutual exclusion, atomic operations, queues, and the like,
SuiteSparseQR does not require these features.

Note that the Intel MKL uses OpenMP [Chapman et al. 2007] rather than Intel’s
TBB for exploiting parallelism in its BLAS. This design choice has performance
implications in the current version of TBB which will be illustrated in Section 5.

In its analysis phase, SuiteSparseQR determines the column elimination tree
(with n nodes) and the frontal-matrix tree (with nf nodes; an amalgamated version
in which each node is a frontal matrix consisting of one or more nodes in the column
elimination tree). Next, an estimate of the floating-point work in each front is
computed (this estimate is exact if the rank-detecting tolerance τ is disabled).
This pass also determines the size of each frontal matrix and the stack size needed
for the contribution blocks for a sequential factorization (parallelism can still occur
within the BLAS if the matrix is factorized with a single TBB task).

The goal of the parallel analysis phase is to assign the nf frontal matrices to TBB
tasks, where there are normally fewer than nf tasks. To simplify synchronization
between tasks, the relationship between the tasks is kept as a tree. It would be
possible to place each frontal matrix in its own task, but this could lead to syn-
chronization overhead in TBB, particularly for the very small frontal matrices at
the bottom of the tree. The front-to-task assignment takes O(nf ) time.

For each frontal matrix f , the work in the subtree rooted at f is found (including
f itself). A big node is defined as a node for which the work in its subtree is greater
than max(ω/α, β) where ω is the total flop count for the entire QR factorization,
and α and β are user-definable parameters that control the task tree granularity.
Typically α should be at least twice the number of cores, and β = 106. All other
nodes are small. To ensure the frontal matrix tree is truly a tree and not a forest,
a placeholder node nf + 1 is added which is the parent of any root nodes. This
placeholder node is also marked as big, regardless of parameters α and β.

The first pass assigns all small nodes to tasks. Suppose front f is a small node
but its parent p is a big node. If f is the least numbered such child of p, all fronts
in the subtree rooted at f are placed in a new task. Additional children of p which
are also small nodes are added to this task, until the task has at least max(ω/α, β)
work. After that, a new task is created for the subtrees of the children of p.

The second pass assigns all big nodes to tasks, in order 1 to nf + 1 so that all
children of a big node f are assigned to their tasks before considering node f itself.
If all of the children of f are assigned to the same task, then f is also assigned to
the same task. If f has no children, or if it has children assigned to different tasks,
then a new task is created to which f is assigned.

Finally, the stack size for each task is found. Two tasks can share a stack if one
is the ancestor of the other, so there are only as many stacks as there are leaves in
the task tree. This completes the analysis required for parallel factorization.

In the numerical factorization phase, all workspace used by the tasks (including
the set of contribution block stacks) is allocated before TBB schedules the tasks.
No dynamic memory allocation is needed during the TBB-parallel phase of the
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AMD Opteron 875 Intel T2500 laptop

clock cycle 2.21 GHz 2.00 GHz
memory 64 GB 2 GB
operating system Red Hat Linux Ubuntu Linux 8.04
MATLAB R2008a R2008a
BLAS Intel MKL 9.1 Intel MKL 9.1
Intel TBB Version 2.1 Version 2.0

performance 1 core 16 cores 1 core 2 cores

theoretical peak 4.42 GFlops 70.72 GFlops 2.00 GFlops 4.00 GFlops

C=A*B peak 3.75 GFlops 53.4 GFlops 1.63 GFlops 3.24 Gflops
C=A*B speedup 14.24 1.99
C=A*B half n = 32 n = 2500 n = 20 n = 28

X=qr(A) peak 2.72 GFlops 12.1 GFlops 1.49 GFlops 2.80 Gflops
X=qr(A) speedup 4.65 1.88
X=qr(A) half n = 70 n = 600 n = 40 n = 129

Table I. Computers used for the experimental results

factorization. Each task factorizes all frontal matrices in a subtree of the frontal
matrix tree, and the results are left on the stack used by that task. No synchro-
nization is needed except that a task can start when all its children are finished;
this is handled by specifying the set of tasks and their dependencies to TBB, and
TBB handles all synchronization and scheduling.

Additional parallelism within each task is exploited via a multicore implemen-
tation of the Level-3 BLAS. Both sequential and parallel performance results are
discussed in the next section.

5. EXPERIMENTAL RESULTS

In this section, the different ordering methods for SuiteSparseQR are compared,
and a default ordering strategy for SuiteSparseQR is defined. The performance
of SuiteSparseQR is compared with other solvers. When different factorization
methods are compared, they are always compared using the same fill-reducing pre-
ordering. To test the methods, all rectangular matrices in the University of Florida
Sparse Matrix Collection [Davis 2008b] are used. As of September 2008, the collec-
tion contains 30 least-squares problems and 353 underdetermined systems (most of
which come from linear programming problems).

Most results are from a Rackable Systems shared-memory computer with eight
dual-core AMD Opteron 875 processors. Single-core results in Sections 5.2 to 5.5
are in MATLAB R2007a with the AMD ACML BLAS; parallel results in Section 5.6
and the statistics in Table I are in MATLAB R2008a. Additional results are pre-
sented on a Dell Latitude D620 dual-core laptop. Table I lists the statistics and
performance of these two computers. All timings presented in this paper are in
MATLAB with tic and toc (wall-clock time), using the version of the BLAS bun-
dled with MATLAB. The C=A*B and X=qr(A) statements are light-weight interfaces
to DGEMM in the BLAS and DGEQRF in LAPACK, respectively; these results are
for n-by-n dense matrices. The half metric is the value of n needed to obtain half
the peak performance; this is a critical metric for a multifrontal sparse QR method,
since it computes the QR factorization of many small dense frontal matrices.
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5.1 The methods

The following methods are compared in this section:

—SuiteSparseQR: When given an underdetermined system (m < n), Suite-
SparseQR can factorize A to find a basic solution or it can factorize AT to find a
minimum 2-norm solution. All other solvers presented in this section can perform
only one or the other (or can do both but only one can be done efficiently).

(1) If m ≥ n, A*P=Q*R is factorized, c=Q’b is computed during factorization, and
Q is discarded. The least-squares solution is x=P*(R\c).

(2) If m < n, the factorization is A’*P=Q*R. The matrix Q is kept in Householder
form. The minimum 2-norm solution is x=Q*(R’\(P’*b)).

(3) If m < n, A*P=Q*R is factorized, c=Q’b is computed during factorization, and
Q is discarded. The basic solution is x=P*[R1\c;0] where R1 is the leading
square submatrix of R. If R is “squeezed” then a column post-ordering is
applied so that R1 consists of all columns found to be linearly independent,
where R1 is square with diagonal entries greater than τ .

—MA49 [Amestoy et al. 1996; Puglisi 1993]: MA49 provides a non-default option
to use the Level-3 BLAS, but for large matrices it was found that using the BLAS
was always faster, so only results with the BLAS are presented.

(1) If m ≥ n, A*P=Q*R is factorized without BTF, and Q is kept in Householder
form. The least-squares solution is x=P*(R\(Q’*b)). It is referred to below
as MA49:default.

(2) This is the same as option (1), but with BTF. It is referred to as MA49:BTF.
(3) If m ≥ n, A*P=Q*R is factorized without BTF, and Q is discarded. The least-

squares solution uses the seminormal equations, x=P*(R’\(R\(P’*A’*b))),
and one step of iterative refinement. It is referred to as MA49:seminormal.

(4) If m < n, the factorization is A’*P=Q*R without BTF, and Q is kept in
Householder form. The minimum 2-norm solution is x=Q*(R’\(P’*b)). It
is referred to as MA49:default.

—MATLAB backslash, or x=A\b in MATLAB (R2008b or earlier). It uses the
implementation from [Gilbert et al. 1992] of the Givens-based method of [George
and Heath 1980; Heath 1982]. By default, P is found via COLMMD, but this is
replaced in these experiments with AMD or COLAMD.

(1) If m ≥ n, A*P=Q*R is factorized. Q is discarded, and c=Q’b is computed
during factorization. The least-squares solution is x=P*(R\c).

(2) If m < n, A*P=Q*R is factorized, Q is discarded, and c=Q’b is computed
during factorization. The basic solution is x=P*[R1\c;0].

(3) MATLAB can compute the minimum 2-norm solution if Q is kept, with the
statements p=colamd(A’) ; [Q,R]=qr(A(p,:)’) ; x=Q*(R’\b(p)). How-
ever, Q is returned in its matrix form which is infeasible for large problems.

5.2 Comparing solvers for least-squares problems

In these comparisons the AMD ordering on AT A is used, which is the default for
MA49 and a more effective ordering than COLMMD used by backslash in MAT-
LAB. SuiteSparseQR, the MATLAB backslash, and all three of MA49’s methods
for solving least-squares problems are compared. Of the 30 least-squares problems,
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Mtx name m/103 n/103 |A|/103 description

1 YCheng/psse1 14.3 11.0 57.4 power system simulation
2 NYPA/Maragal 6 21.3 10.2 537.7 from NY Power Authority
3 YCheng/psse0 26.7 11.0 102.4 power system simulation
4 Kemelmacher/Kemelmacher 28.5 9.7 100.9 3D computer vision
5 YCheng/psse2 28.6 11.0 115.3 power system simulation
6 Sumner/graphics 29.5 11.8 118.0 computer graphics problem
7 NYPA/Maragal 7 46.8 26.6 1200.5 from NY Power Authority
8 Toledo/deltaX 68.6 22.0 247.4 computer graphics problem
9 Pereyra/landmark 72.0 2.7 1146.8 surveying problem

10 Springer/ESOC 327.1 37.8 6019.9 satellite orbits
11 Rucci/Rucci1 1977.9 109.9 7791.2 an ill-conditioned problem

Table II. Large least-squares problems

the 11 largest (with m ≥ 10, 000) are shown in Table II (excluding one matrix too
large for this computer). Of these, four are rank-deficient.

Table III lists the total time and memory usage required by each of the 5 meth-
ods to solve the 11 problems. Since the collection has so few full-rank least-squares
problems, the four rank-deficient matrices were also solved via Tikhonov regular-
ization (appending γI to A, where γ = 10−12 maxj ||A∗j ||2) to get more results to
compare with MA49. These are shown in the second part of Table III (MATLAB
backslash is skipped for these regularized problems). Note that appending γI en-
sures that the matrix has no column singletons, unless A itself has columns with
no nonzeros in them at all. In each table in this paper, run times are in seconds
and memory usage is in gigabytes. A dash is shown in the MA49 results for rank-
deficient matrices; this is not a failure on the part MA49. Memory usage statistics
are not available from the MATLAB backslash.

Except for two small matrices for which it is tied with MA49, and two regularized
problems, SuiteSparseQR is the fastest method for these matrices and uses the least
amount of memory. When MA49 uses the seminormal equations it can discard Q,
and in this case it requires about the same memory as SuiteSparseQR (which also
discards Q).

5.3 Comparing solvers for minimum 2-norm solutions

The qr function in MATLAB (R2008b and earlier) is not well-suited to computing
the minimum 2-norm solution to a sparse underdetermined system since it returns
Q in matrix form rather than as a set of Householder vectors or Givens rotations
(qr uses Givens rotations). Consider the results shown in Table IV for the lp nug08
linear programming matrix obtained from M. Resende. It is 912-by-1632 with rank
742 and was selected for this example because it has no singletons. For these results,
AMD is used for both SuiteSparseQR and the MATLAB qr. The matrix H is the
set of Householder vectors as computed by SuiteSparseQR. It is not uncommon
for H to have fewer nonzeros than R, while Q can be almost a full matrix. Both
methods find solutions with equally low residuals (about 10−14), in spite of the
rank-deficiency of the matrix. The relative timing results in Table IV are typical
for larger matrices as well, although unlike nearly all other matrices, the “nug”
matrices in the collection experience extreme fill-in in R.
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Mtx SuiteSparseQR MA49:default MA49:BTF MA49:semi. Backslash
time mem time mem time mem time mem time

1 0.1 0.00 0.1 0.01 0.2 0.01 0.1 0.00 0.2
2 1222.0 1.62 - - - - - - 7298.5
3 0.1 0.01 0.2 0.01 0.2 0.01 0.2 0.01 0.4
4 0.8 0.02 0.8 0.10 0.8 0.10 0.8 0.02 9.4
5 0.1 0.01 0.2 0.01 0.2 0.01 0.2 0.01 0.6
6 0.1 0.01 0.4 0.01 0.4 0.02 0.4 0.01 0.8
7 6654.6 5.38 - - - - - - 17318.2
8 187.8 0.45 394.6 3.41 401.1 3.42 411.1 0.60 5708.2
9 1.2 0.04 - - - - - - 23.9

10 874.4 2.86 - - - - - - 67928.6
11 5568.5 5.86 12615.4 41.8 14741.7 41.83 15956.9 7.38 > 3 days

with regularization for rank-deficient matrices:

2’ 1246.0 2.39 1393.9 5.13 1389.4 5.15 1395.5 2.51
7’ 6764.9 8.67 3725.0 25.60 3733.9 25.61 3653.8 3.58

9’ 1.3 0.04 1.1 0.08 - - 1.0 0.03

10’ 1015.0 3.42 2228.7 23.97 2422.7 24.02 2340.7 2.57

Table III. Results for large least-squares problems; best results in bold

Basic solution Min. 2-norm solution

|R| 452,924 362,496
|H| 116,234 210,084
|Q| 486,877 1,768,457
SuiteSparseQR 0.34 sec. (Q discarded) 0.31 sec. (using H)
MATLAB 3.42 sec. (Q discarded) 32.3 sec. (using Q)

Table IV. Basic and minimum 2-norm solutions for the Qaplib/lp nug08 matrix

Attempting to use the MATLAB qr to find the minimum 2-norm solution is
infeasible for large problems, in both time and memory. In contrast, both MA49 and
SuiteSparseQR can efficiently compute the minimum 2-norm solution by factorizing
AT and keeping Q in Householder form (the H matrix) to compute the solution
x=Q*(R’\(P’*b)). There are 150 rectangular matrices in the collection with m < n
and n ≥ 10, 000; of those, 61 rank-deficient matrices and 11 matrices too large for
SuiteSparseQR and MA49 to handle are excluded. The resulting test set contains
78 matrices. Table V lists the results for those matrices with n ≥ 70, 000.

Figure 4 presents the results for all 78 matrices in two performance profiles (one
for the run-time and the other for the memory usage). For any given method, a
data point (x, y) on the time profile means that the method is no worse than x times
slower than the fastest time of any method for those y problems. For example, the
y-intercept gives the number of problems for which a method is the fastest (or is
tied for the fastest). The (2, y) point gives the number of problems (y) for which a
method is either fastest or no worse than twice as slow as the fastest method.

The primary difference between the two methods is that SuiteSparseQR finds a
more precise estimate of the space needed for Q. This estimate is exact if the rank-
deficiency check is disabled and an upper bound by default (the default tolerance
was used for these experiments). The analysis of MA49 always finds an upper
bound, even though it only factorizes full-rank matrices. The second difference
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name m/103 n/103 |A|/103 SuiteSparseQR MA49
time mem time mem

Meszaros/pltexpa 26.9 70.4 143.1 2.4 0.09 3.1 0.19
Qaplib/lp nug20 15.2 72.6 304.8 2032.0 6.17 4665.3 19.57
Meszaros/rlfdual 8.1 75.0 282.0 26.2 0.37 37.0 0.79
Meszaros/nemsemm1 3.9 75.4 1054.0 1.4 0.08 3.6 0.07

Meszaros/fxm3 16 41.3 85.6 392.3 0.8 0.04 1.7 0.06
Mittelmann/fome13 48.6 97.8 285.1 37.7 0.52 75.8 3.06
Meszaros/stat96v1 6.0 197.5 588.8 0.7 0.06 0.6 0.07
Meszaros/dbic1 43.2 226.3 1081.8 11.1 0.28 31.1 0.95
Mittelmann/sgpf5y6 246.1 312.5 832.0 7.6 0.48 95.1 1.46
Mittelmann/watson 1 201.2 387.0 1055.1 4.1 0.23 140.9 0.48
Mittelmann/watson 2 352.0 677.2 1846.4 7.6 0.43 431.9 0.77

Meszaros/stat96v2 29.1 957.4 2852.2 3.6 0.29 3.5 0.32
Meszaros/stat96v3 33.8 1113.8 3317.7 4.2 0.34 4.1 0.38

Table V. Minimum 2-norm solutions; best results in bold
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Fig. 4. Performance profiles for minimum 2-norm solutions with the AMD ordering

between the methods is that SuiteSparseQR exploits singletons, whereas the BTF
pre-ordering in MA49 is only available for least-squares problems.
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Mtx AMD COLAMD METIS Default Best
time mem time mem time mem time ord time ord

1 0.1 0.00 0.1 0.00 0.2 0.00 0.1 COL 0.2 AMD
2 1222.0 1.62 922.8 1.63 1218.1 1.62 1221.1 AMD 941.7 COL
3 0.1 0.01 0.1 0.01 0.3 0.01 0.1 AMD 0.4 AMD
4 0.8 0.02 0.7 0.01 0.8 0.01 0.8 AMD 0.9 MET
5 0.1 0.01 0.2 0.01 0.3 0.01 0.1 AMD 0.4 AMD
6 0.1 0.01 0.2 0.01 0.5 0.01 0.2 AMD 0.5 AMD
7 6654.6 5.38 1617.9 2.26 2163.5 2.41 1614.1 COL 1801.4 COL
8 187.8 0.45 516.9 1.01 95.3 0.34 96.2 MET 96.6 MET
9 1.2 0.04 46.9 0.20 1.5 0.04 1.3 AMD 2.7 AMD

10 874.4 2.86 844.8 2.43 386.9 0.62 408.2 MET 414.4 MET
11 5568.5 5.86 5203.2 5.56 2696.1 3.20 2687.6 MET 2698.1 MET

Table VI. SuiteSparseQR results for large least-squares problems with different orderings

5.4 Selecting an ordering for SuiteSparseQR

The fill-reducing ordering has a huge impact on the performance of any sparse
matrix factorization. All methods discussed here can use any ordering, but a single
ordering method was selected in the results above to remove one source of variability
when comparing between methods. This section considers the effect of different
orderings on the performance of SuiteSparseQR.

Ideally, a method would be able to select the right ordering for each matrix
automatically without trying them all. SuiteSparseQR relies on CHOLMOD’s or-
dering/analysis phase which has a simple interface that allows the user to specify a
list of orderings; CHOLMOD tries them all and picks the one with the least fill-in in
R. Trying all three (AMD, COLAMD, and METIS) increases the ordering/analysis
time, however.

SuiteSparseQR was tested with different orderings on all 30 least-squares prob-
lems and all 353 minimum 2-norm problems for underdetermined systems in the
collection. The default ordering strategy of SuiteSparseQR was determined based
on these results. In this default strategy, COLAMD is used if m ≤ 2n after remov-
ing singletons; otherwise, CHOLMOD’s default ordering is used. CHOLMOD’s
default strategy tries AMD and then tries METIS only if the AMD ordering leads
to high fill-in and flop count. Let f be the flop count for the Cholesky factorization
of (AP )T AP using the ordering P from AMD. If f/|R| ≥ 500 and |R|/|A| ≥ 5 then
METIS is attempted and the best ordering (AMD or METIS) is used. Otherwise,
AMD is used without trying METIS. CHOLMOD uses this strategy because the
ordering time for METIS can be many times higher than AMD, although the extra
ordering time is worth it for large matrices. When m < n the time and memory
required by AMD and METIS can be high (even exceeding the space needed for
the numerical factorization), although there are problems with m < n where AMD
and/or METIS give better results.

Table VI illustrates the results on the 11 large least-squares problems from Ta-
ble II. The first three columns (AMD, COLAMD, and METIS) reflect the time
and memory taken if just one ordering is used; the AMD column is the same as
the SuiteSparseQR column in Table III. The column labeled “Default” is Suite-
SparseQR’s default ordering strategy. The last column, “Best,” reflects the time
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Fig. 5. SuiteSparseQR performance profiles with different orderings

taken by SuiteSparseQR to try all three orderings and use the one with the smallest
|R|. The last two columns show the ordering actually used by these two strategies
(with COLAMD and METIS abbreviated COL and MET, respectively).

Figure 5 presents time and memory profiles for these five strategies using the 11
least-squares problems used in Table VI and 138 minimum 2-norm problems with
n ≥ 10, 000 (this excludes the 12 matrices that are too large for SuiteSparseQR).

The “Best” ordering strategy typically finds an ordering that minimizes memory
usage but the total time is high because of increased ordering time, and because
lower fill-in does not always lead to a lower factorization time. The default strategy
has the best time profile over all, and a very good memory profile.

5.5 Comparison with LAPACK

[Chen et al. 2009] showed that the ratio of the number of floating-point operations
over the number of nonzeros in L was a good predictor of the GFlop rate that a
sparse matrix factorization algorithm can attain. Figure 6 plots a similar metric for
SuiteSparseQR with the AMD ordering. The X axis is the total flop count divided
by the memory usage in bytes. The Y axis is the GFlop performance, with the top
of the figure equal to the theoretical peak of 4.42 GFlops.

The flop count is found after relaxed amalgamation, but the Householder reflec-
tions are counted as if they are applied one at a time. They actually are applied as a
block, via DLARFT and DLARFB. That is, SuiteSparseQR is actually performing
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Fig. 6. SuiteSparseQR performance compared with LAPACK

more flops than is indicated in Figure 6, but these are useless flops on the zeros in
the lower left part of each frontal matrix. Each circle is one of the 383 sparse ma-
trices in the collection (all 30 least-squares problems, and all 353 minimum 2-norm
problems), excluding smaller matrices that fall outside the plot and 12 matrices too
large for SuiteSparseQR (requiring more than 64GB of memory to factorize).

The MATLAB statement X=qr(A) when A is dense is a light-weight interface to
DGEQRF, except that it must make a copy of its input. For large matrices, this
work is about 1% of the total time. The floating-point work is 2(mn2 − n3/3)
for an m-by-n matrix, and if the copy of X is excluded, it uses 8mn bytes for the
matrix and 8 min(32, m)n workspace. In Figure 6 the performance of qr for square
dense matrices is shown. Its peak performance is 2.67 GFlops on a single core
when n = 1000 (which does not include a forward/backsolve, but does include the
copy of X). SuiteSparseQR obtains a peak of 2.49 GFlops on a single core, which
includes the AMD ordering, the symbolic analysis, the numeric factorization, the
application of Q to b, and the backsolve with R.

Like SuiteSparseQR, DGEQRF does most of its work in DLARF* routines, but
unlike DGEQRF which allocates the 32-by-32 workspace matrix T with a leading
dimension of n, SuiteSparseQR ensures this matrix has a leading dimension of 32.
This can have a large impact on run time if m << n. For example, with the matrix
A=rand(100,20000) and S=sparse(A), the sparse QR (R=spqr(S)) is almost twice
as fast as R=qr(A) on the dual-core laptop (0.64 vs 1.2 seconds).
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5.6 Parallel results

The leaves of the TBB task tree can often contain small frontal matrices with little
scope for parallelism in the BLAS. In contrast, the root of the tree provides no tree-
based parallelism, but can be a rich source of BLAS-based parallelism. These two
kinds of parallelism should be complimentary, but in the current implementation
of TBB they compete with one another. A future implementation of TBB hopes
to address this issue [Robison 2008]. The threads created by TBB and OpenMP
are separate, and each TBB thread will create its own set of OpenMP threads
(although for small matrices, the OpenMP-based BLAS uses just one thread). The
maximum total number of threads used is thus the product of these two sets of
threads. In a future implementation, TBB should use all the threads at the leaves
and lower part of the the TBB task tree, and the BLAS should use all the threads
at the root node of the TBB task tree. In the middle a mixture should be used.

The four least-squares systems with largest n from Table II are selected for
this experiment. METIS is used since it gives the best orderings for parallel fac-
torization. The results on two different multicore computers are shown in Ta-
bles VII and VIII.

Table VII reports the results for three of these matrices on the dual-core lap-
top (one matrix is too large). For the largest problems, SuiteSparseQR obtains a
substantial fraction of the dense qr performance on this laptop (refer to Table I).
The total single-threaded time (TBB:1, BLAS:1) is in seconds (including ordering,
analysis, numeric factorization, and solve time). TBB:1 means that the entire ma-
trix is factorized as a single task without the use of any calls to the TBB library.
Columns to the right of the single-threaded column give the speedup relative to
the total single-threaded time (note that only the numeric factorization is done in
parallel). Each column also reports the GFlops obtained (total time / flops, but
excluding any useless flops performed). The (TBB:2, BLAS:2) method creates up
to four threads, resulting in a drop in performance compared with the 2-thread
methods, (TBB:1, BLAS:2) and (TBB:2, BLAS:1). The 2-thread methods have
comparable performance and show good speedup for large problems.

The same four matrices were tested with one to 16 TBB threads and with one
to 16 BLAS threads (all 256 combinations) on the 16-core AMD Opteron system.
Table VIII lists the results with a single thread, the best speedup found with BLAS-
only parallelism and with TBB-only parallelism, respectively, and the best speedup
and GFlops found with any mixture of multithreading methods. In Table VIII, k is
the number of threads used in TBB, b is the number of threads used in the BLAS,
and speedup is abbreviated as “sp.” On 16 cores, the peak of 14.1 GFlops obtained
by SuiteSparseQR actually exceeds the peak of 12.1 GFlops obtained by the dense
QR in MATLAB (refer to Table I), which is LAPACK plus the multithreaded
BLAS. A true parallel dense QR factorization ([Blackford et al. 1997; van de Geijn
1997]) would likely obtain a higher performance.

These results show that the tree-based parallelism exploited with TBB is typically
able to utilize all the cores more efficiently than when just exploiting BLAS-based
parallelism within each frontal matrix. The BLAS-only speedup is lower, and drops
slightly below the fastest speedup if too many cores are used. The best results are
typically obtained by exploiting nearly all of the available cores for TBB, with each
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Matrix TBB:1, BLAS:1 TBB:1, BLAS:2 TBB:2, BLAS:1 TBB:2, BLAS:2
time GFlops speedup GFlops speedup GFlops speedup GFlops

deltaX 156.6 1.31 1.76 2.30 1.74 2.29 1.41 1.85
landmark 1.5 0.81 1.22 0.99 1.48 1.19 1.26 1.02
ESOC 580.1 1.27 1.75 2.22 1.72 2.18 1.41 1.78

Table VII. Parallel performance on a dual-core Dell laptop

Matrix TBB:1, BLAS:1 TBB:1, BLAS:b TBB:k, BLAS:1 best (TBB:k, BLAS:b)

time GFlops speedup b speedup k sp. k b GFlops

deltaX 97.5 2.11 2.99 10 4.13 16 5.70 15 6 12.01
landmark 1.6 0.76 1.07 5 1.93 14 1.93 14 1 1.47
ESOC 381.2 1.93 2.59 8 4.85 15 5.47 14 3 10.56
Rucci1 2525.8 2.45 3.70 12 2.44 16 5.76 14 12 14.10

Table VIII. Parallel performance on a 16-core AMD Opteron system

TBB thread allowed to use just a few threads in the BLAS. Ideally, when a future
version of Intel’s TBB is able to work better with OpenMP [Robison 2008], these
settings would be chosen automatically.

6. SUMMARY

SuiteSparseQR is an efficient multithreaded multifrontal sparse QR factorization
method whose peak performance matches and sometimes exceeds that of the dense
QR in LAPACK on both single and multiple cores. Exploiting singletons and
ordering/analyzing the matrix A without forming AT A can lead to asymptotic
reductions in time and memory usage, depending on the matrix. Its default ordering
strategy is better than the underlying orderings it relies on by rapidly selecting a
good ordering automatically without trying all three. Because it accurately predicts
the memory required to hold Q as a set Householder vectors, its memory usage is
lower than MA49. Unlike MA49, it can handle rank-deficient matrices, matrices
with m < n, and complex matrices. Its MATLAB interface provides substantial
improvements for the MATLAB user, such as the representation of Q as a collection
of sparse Householder vectors which allow it to efficiently solve minimum 2-norm
problems. The availability of the software and interfaces for MATLAB, C, and
C++ programs are described in a companion paper, [Davis 2008a].
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